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Abstract. We introduce certainq-deformations of the binomial distribution and the Poisson
distribution by virtue ofq-deformed sequences of orthogonal polynomials. They correspond to the
case of free independence forq = 0, and are reduced to the usual commutative case whenq = 1.
Furthermore, we determine the probability measure for aq-deformed Poisson distribution by using
the formulae for the Al-Salam–Chihara polynomials of Askey and Ismail.

1. Introduction

A non-commutative or quantum probability space is a unital (possibly non-commutative)
algebra,A together with a linear functional,φ : A → C, such thatφ(1) = 1. If A is a
C∗-algebra andφ is a state then we call a non-commutative probability space(A, φ) aC∗-
probability space.A corresponds to the algebra of measurable functions and hence an element
in A is regarded as a non-commutative random variable. The distribution ofx ∈ A underφ is
determined as the linear functional onC[X] (the polynomials in one variable) by

C[X] 3 f 7−→ φ(f (X)) ∈ C. (1.1)

Considered in theC∗-probability context, the distribution of a self-adjoint element inA can
be realized as the probability measure onR.

In recent years the following question has been considered in many papers: what
distribution will be obtained in a non-commutative central limit, that is in the case where
we replace the classical commutative notion of independence by some other type in a non-
commutative probability space. For free independence which was introduced by Voiculescu in
[1], the Gaussian distribution is replaced by Wigner’s semicircle distribution, which is called
the free central limit theorem (see, for instance, [2]). Bożejko, Kümmerer and Speicher
introducedq-analogues of Brownian motion and Gaussian processes in [3–5], which are
governed by classical independence forq = 1 and free independence forq = 0. Van Leeuwen
and Maassen also investigated aq-deformed Gaussian distribution in [6], which takes the
semicircle distribution forq = 0 and recovers the Gaussian distribution forq = 1. Their
constructions were based onFq(H), theq-deformation of the Fock space over a Hibert space
H. They regarded the distribution of the operatora(ξ)+a(ξ)∗ under the vacuum vector stateφ
as theq-deformed Gaussian distribution in a non-commutative probability space(0q(H), φ),
wherea(ξ) anda(ξ)∗ are the annihilation and the creation operators associated withξ ∈ H
satisfying theq-commutation relation, respectively. Furthermore, it is very worthwhile noting
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1436 N Saitoh and H Yoshida

that thisq-deformed Gaussian distribution can be associated with theq-Hermite polynomials.
By virtue of this, one can see that, for‖ξ‖ = 1, theq-deformed Gaussian distribution is
supported on the interval [−2/

√
1− q, 2/√1− q] with the density

f (t) = 1

π

√
1− q sinθ

∞∏
n=1

(1− qn) ∣∣1− ei2θqn
∣∣2 (1.2)

whereθ ∈ [0, π ] is such thatt = (2/
√

1− q) cosθ (for more details see [3]). We should
mention here that Nica has found [7] a niceq-analogue of the cumulants generating function
Rq(z) which takes Voiculescu’sR-transform for the free convolution in the limitq → 0 and
recovers the classical cumulants generating function, the logarithm of the Fourier transform,
if one takes the limitq → 1. He has also investigated theq-deformed convolution in terms of
Rq(z) and the central limit theorem, in which theq-deformed Gaussian distribution appears
as its limit distribution.

In the literature, a certainq-deformed Poisson distribution is known as the Euler
distribution or Heine distribution as in [8] which, of course, are natural deformations in some
sense and all of these, however, are discrete. Kemp [9] showed that the Euler and Heine
distributions are the limiting forms of some kind of aq-analogue of the negative binomial
distribution and one of the binomial distribution, respectively. Another kind ofq-analogue of
the binomial distribution has been introduced by Sicong [10] which takes the Euler distribution
as its limiting form.

It is natural to regard the distribution of a sum of a free family of projections as the
free analogue of the binomial distribution because a projection corresponds to the Bernoulli
distribution. In [11], Akiyama and the second author have studied its combinatorial structure
and derived the sequence of orthogonal polynomials associated with the free analogue of the
binomial distribution, of which a three-term recurrence relation is of the constant coefficients
type of Cohen–Trenholme [12]. They have also shown the free Poisson limit and the free
de Moivre–Laplace limit by using the recurrence relation of the orthogonal polynomials for
the free analogue of the binomial distribution.

Inspired by the above, we would like to introduce differentq-deformed binomial and
Poisson distributions based on orthogonal polynomials in this paper. We first introduce
a q-deformed binomial distributions by virtue of aq-deformed sequence of orthogonal
polynomials, which takes the free binomial distribution in the limitq → 0 and reduces to
the usual binomial distribution whenq → 1. Furthermore, we see that it is compatible with
theq-deformed Gaussian distribution if we take the de Moivre–Laplace limiting procedure.
By taking the Poisson limit in ourq-deformed binomial distribution, we obtain ourq-deformed
Poisson distribution which is not discrete but has an absolute continuous part, and also find its
probability measure by using the formulae for the Al-Salam–Chihara polynomials of Askey
and Ismail [13]. We also discuss the fact that the limiting forms of ourq-deformed Poisson
distribution forq → 0 and forq → 1 can be the free and the usual Poisson distributions,
respectively.

2. A q-deformed binomial distribution

Throughout this paper, we make use of the terms ofq-calculus, which is over a century old.
The standard references onq-calculus are [14, 15]. Let us just remind the reader of some of
its basic notation.

We put forn ∈ N0 andq ∈ [0, 1)

[n]q := 1− qn
1− q = 1 +q + · · · + qn−1 with [0]q := 0 (2.1)
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and call it aq-number. Then we have theq-factorial

[n]q ! := [1]q [2]q · · · [n]q with [0]q ! := 1. (2.2)

Another symbol used is theq-analogue of the Pochhammer symbol,

(a; q)n :=
n−1∏
j=0

(1− aqj ) in particular (a; q)∞ :=
∞∏
j=0

(1− aqj ) (2.3)

where we use the convention that(a; q)0 := 1. A product(a1; q)n(a2; q)n · · · (ar; q)n is
denoted as(a1, a2, . . . , ar; q)n.

There is aq-deformation of the exponential function defined as

expq(x) :=
∞∑
n=0

xn

[n]q !
(2.4)

which satisfies the relation
∞∏
n=0

(1− (1− q)qnx)−1 = expq(x). (2.5)

Now we shall recall the basic facts on orthogonal polynomials. Letν be a probability
measure onRwith finite moments of all orders. Then it is well known [16] that there exists two
sequences of real numbersαm ∈ R andβm > 0, which shall be called the Jacobi parameters,
such that the sequence of the orthogonal polynomials{Pm(X)} with respect to the measureν
can be given by the recurrence relation,

P0(X) = 1 P1(X) = X − α0

Pm+1(X) = (X − αm)Pm(X)− βmPm−1(X) (m > 1).
(2.6)

Moreover, they satisfy that∫
t∈R

Pk(t)Pm(t) dν(t) = δk,mβ1β2 · · ·βm. (2.7)

The Jacobi parameters are determined only by the sequence of moments ofν. Conversely,
given the parametersαm andβm, Favard’s theorem ensures the existence of the probability
measure for which the sequence of polynomials determined by the above recurrence relation
are orthogonal. It also can be shown that the probability measureν is supported only in finitely
many points if and only ifβm = 0 from somem on, thus the sequence of polynomials is
essentially finite.

Let ν(n,p) be the probability measure for the binomial distributionB(n, p),

ν(n,p)(dt) =
n∑
k=0

(
n

k

)
pk(1− p)n−kδk (2.8)

where dt is the Lebesgue measure andδk denotes the Dirac unit mass att = k. The orthogonal
polynomials forν(n,p) are well known as classical discrete orthogonal polynomials, namely the
Krawtchouk polynomials (see, for example, [17, 18]), determined by the following recurrence
relation:

P0(X) = 1 P1(X) = X − np
Pm+1(X) =

(
X − α(n,p)m

)
Pm(X)− β(n,p)m Pm−1(X)

(2.9)
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with the Jacobi parameters

α(n,p)m = np + (1− 2p)m β(n,p)m = m(n−m + 1)p(1− p) (2.10)

for m = 1, 2, . . . , n, whereβ(n,p)m = 0 form > n + 1.
Before making a deformation on the orthogonal polynomial for the binomial distribution,

we would like to recall the recurrence relation of the orthogonal polynomial for the free
binomial distributionBfree(n, p), of which a three-term recurrence relation is of the constant
coefficients type of Cohen–Trenholme [12]. In [11], Akiyama and the second author have
studied the combinatorial structure of the operator,

x = κ(p1 + p2 + · · · + pn) (2.11)

for a free family of projections{pi}ni=1 (n > 2) with φ(pi) = α (i = 1, 2, . . . , n) and scalar
κ in aC∗-probability space(A, φ) and they have obtained the three-term recurrence relation
for the distribution of the operatorx, namely

P0(X) = n

n− 1
P1(X) = X − κnα

Pm+1(X) = (X − κnα − κ(1− 2α)) Pm(X)

−(n− 1)κ2α(1− α)Pm−1(X) (m > 1)

(2.12)

where we should note that the normalization ofP0 is different from that in (2.6). In the
above formula, by puttingκ = 1 and rewritingα = p we have the recurrence relation of the
orthogonal polynomials forBfree(n, p),

P0(X) = 1 P1(X) = X − np
P2(X) = (X − np − (1− 2p)) P1(X)− np(1− p)P0(X)

Pm+1(X) = (X − np − (1− 2p)) Pm(X)

−(n− 1)p(1− p)Pm−1(X) (m > 2).

(2.13)

Having this formula in mind, we shall make a deformation on the Jacobi parameters for
the binomial distribution in (2.10) and thus define aq-deformed binomial distribution.

Definition 2.1. For q ∈ [0, 1), we call the probability measure(ν(n,p))q induced from the
Jacobi parameters(

α(n,p)m

)
q
= np + (1− 2p)[m]q(

β(n,p)m

)
q
= [m]q

(
n− [m− 1]q

)
p(1− p) (2.14)

theq-deformed binomial distribution and denoteBq(n, p). Here we shall put
(
β
(n,p)
m

)
q
= 0 if

[m− 1]q > n.

Example 2.1. In the limit q → 0, it holds that

lim
q→0

(
α(n,p)m

)
q
= np + (1− 2p) for m > 1

lim
q→0

(
β(n,p)m

)
q
=
{
(n− 1)p(1− p) if m > 2

np(1− p) if m = 1.

(2.15)
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Hence thisq-deformed binomial distribution becomes the free binomial distribution when
q = 0. The probability measure(ν(n,p))0 can be given as follows (see section 2 in [11]):

(ν(n,p))0=−n
√−(t − γ−)(t − γ+)

2πt(t − n) χ[γ−,γ+] dt + max(0, 1− np)δ0 + max(0, 1− n(1− p))δn
(2.16)

whereγ± =
(√
(n− 1)p ±√1− p)2 andχI denotes the characteristic function on the interval

I .

Next we shall investigate the de Moivre–Laplace limiting procedure in ourq-deformed
binomial distribution. That is, we consider what distribution is obtained if we standardize
(ν(n,p))q so as to be of mean 0 and of variance 1, and take the limitn→∞. We can perform
this limiting procedure in terms of the Jacobi parameters as follows.

Consider a non-commutative random variablex in a non-commutative probability space
(A, φ), of which thekth momentφ(xk) is given as one ofBq(n, p), for everyk ∈ N0. We will
standardizex so as to have 0-expectation and to be of variance 1, that is, consider the random
variable

z = x − φ(x) · 1√
φ(x2)− φ(x)2

. (2.17)

Find the Jacobi parameters of the orthogonal polynomials for the sequence of moments of the
random variablez. Then taking the limitn→∞, we will obtain the orthogonal polynomials
for the limit distribution of de Moivre–Laplace.

In our situation, if we shift so as to have 0-expectation in theq-deformed binomial
distribution, its orthogonal polynomials{Qm(X)}m>0 are given as{Pm(X+np)}m>0, of which
Jacobi parameters are represented as((α

(n,p)
m )q−np) and(β(n,p)m )q . In addition, to standardize

so as to be of variance 1, it can be realized by replacing the Jacobi parameters((α
(n,p)
m )q −np)

and (β(n,p)m )q by ((α(n,p)m )q − np)/
√
(β

(n,p)

1 )q and (β(n,p)m )q/(β
(n,p)

1 )q , respectively, because

the variance ofBq(n, p) is (β(n,p)1 )q = np(1− p). Thus the orthogonal polynomials of this
standardizedq-deformed binomial distribution are determined by the recurrence relation that

P0(X) = 1 P1(X) = X

Pm+1(X) =
(
X − (1− 2p)[m]q√

np(1− p)
)
Pm(X)

−
(

[m]q
(
n− [m− 1]q

)
p(1− p)

np(1− p)

)
Pm−1(X) (m > 1).

(2.18)

Taking the limitn→∞, we obtain the recurrence relation of the orthogonal polynomials for
the limit distribution, namely

P0(X) = 1 P1(X) = X
Pm+1(X) = XPm(X)− [m]qPm−1(X) (m > 1)

(2.19)

which defines nothing but certainq-Hermite polynomials. Thus the limit distribution is a
q-deformed Gaussian distribution as expected.
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3. A q-deformed Poisson distribution

In this section, we define ourq-deformed Poisson distribution based on the orthogonal
polynomials forBq(n, p). We shall give it by taking the Poisson limits in the Jacobi parameters
(2.14), that isn→∞ andp→ 0 butnp = λ > 0 remains finite, hence(

α(n,p)m

)
q
= np + (1− 2p)[m]q −→ λ + [m]q (3.1)(

β(n,p)m

)
q
= [m]q

(
n− [m− 1]q

)
p(1− p) −→ λ[m]q . (3.2)

Definition 3.1. For q ∈ [0, 1) andλ > 0, we call the induced probability measureµq from
the sequence of polynomials

P0(X) = 1 P1(X) = X − λ
Pm+1(X) =

(
X − (λ + [m]q)

)
Pm(X)− λ[m]qPm−1(X) (m > 1)

(3.3)

the q-deformed Poisson distribution with parameterλ. In the limit q → 1, the recurrence
relation (3.3) defines well known classical discrete orthogonal polynomials, namely the
Charlier polynomials (see, for example, [17], chapter VI-1).

Now let us find the probability measure of thisq-deformed Poisson distribution. For
this purpose, we will use the Al-Salam–Chihara polynomials. Al-Salam and Chihara in [19]
defined the orthogonal polynomialsPm(X) ≡ Pm(X; q; a, b, c) which satisfy the three-term
recurrence relation

P0(X) = 1 P1(X) = X − a
Pm+1(X) =

(
X − aqm)Pm(X)− (c − bqm−1)(1− qm)Pm−1(X) (m > 1)

(3.4)

as the result for the characterization problem of some convolution formulae. They were unable
to find the induced probability measure except whena = b = 0. The casea = b = 0 is a
special case of theq-ultraspherical polynomials, namely theq-Hermite polynomials.

If we putQm(X) = Pm(X + (λ + 1/(1− q))) in (3.3) then we have the relation,

Q0(X) = 1 Q1(X) = X −
( −1

1− q
)

Qm+1(X) =
(
X −

( −1

1− q
)
qm
)
Qm(X)− λ

1− q (1− q
m)Qm−1(X) (m > 1)

(3.5)

which means that{Qm}m>0 are the Al-Salam–Chihara polynomials of parameters

a = −1

1− q b = 0 c = λ

1− q . (3.6)

Askey and Ismail in [13] succeeded in giving the distribution function for the Al-Salam–Chihara
polynomials in the general case. It enables us to obtain the probability measure induced from
the orthogonal polynomials{Qm}m>0. Then shifting it(λ + 1/(1− q)) to the right, we have
the probability measure for ourq-deformed Poisson distribution.

At first, we consider the point masses for{Qm}m>0. In our case, the parameters defined in
equation (3.8) of [13, p 18], which are distinguished in our paper by the subscript AI, become
αAI = −qk/λ, βAI = (q−1)/qk, λAI = q−1 andµAI →∞, and it is assumed that 0< q < 1
andλ(1− q) 6 1. Using equation (3.28), upper line, in [13, p 23] with these parameters, it
follows that the discrete spectrum of the distribution function is the set of points{(tk)q},

(tk)q = − qk

1− q −
λ

qk
k = 0, 1, . . . , K (3.7)
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whereK = sup{ k | q2k > λ(1− q)}, and the jump(Jk)q at each point(tk)q can be given as

(Jk)q =
(

1− λ(1− q)
q2k

) (
λ(1− q)q−k+1

)k
(q; q)k

(
λ(1− q)q−k+1; q)∞

=
(

1− λ(1− q)
q2k

) (
λq−k+1

)k
[k]q !

1

expq
(
λq−k+1

) (3.8)

where we use the equality (2.5) for theq-deformed exponential function. In the case of
λ(1− q) > 1, there is no point spectrum.

Furthermore, the results in section 3.4 in [13] derive that the absolutely continuous part
of the probability measure is supported on the interval[

−2

√
λ

1− q , 2
√

λ

1− q

]
and that letting

t = 2

√
λ

1− q cosθ (06 θ 6 π)

the density can be given as

1

2π

(q; q)∞
2
√
λ/(1− q) sinθ

∣∣∣∣∣
(
e−i2θ ; q)∞(

(−1/
√
λ(1− q) )e−iθ ; q)∞

∣∣∣∣∣
2

= 1

4π
√
λ/(1− q) sinθ

(
q, e−i2θ , ei2θ ; q)∞(

(−1/
√
λ(1− q) )e−iθ , (−1/

√
λ(1− q) )eiθ ; q)∞ .

(3.9)

We can rewrite this density as follows:

1

2π

(q; q)∞
2
√
λ/(1− q) sinθ

∞∏
n=0

∣∣∣∣ 1− e−i2θqn

1 + (1/
√
λ(1− q) )e−iθqn

∣∣∣∣2
= 1− q

2π

(
2
√
λ/(1− q) sinθ

2
√
λ/(1− q) cosθ + λ + 1/(1− q)

)

×
∞∏
n=1

(1− qn)
∣∣∣∣ 1− e−i2θqn

1 + (1/
√
λ(1− q) )e−iθqn

∣∣∣∣2

= 1− q
2π

(√
4λ/(1− q)− t2
t + λ + 1/(1− q)

) ∞∏
n=1

(1− qn)
(
λ(1 +qn)2 − (1− q)qnt2
qnt + λ + q2n/(1− q)

)
.

(3.10)

After a shift inX by (λ + 1/(1− q)) to the right in the discrete part and in the continuous part
we obtain the probability measure for ourq-deformed Poisson distribution.

Theorem 3.1.For 0 < q < 1 and λ > 0, the probability measureµq for the q-deformed
Poisson distribution of parameterλ can be given as follows. We set the functionfq(t) as

fq(t) =
(1− q)

√
4λ/(1− q)− (t − λ− 1/(1− q))2

2πt

×
∞∏
n=1

(1− qn)λ(1 +qn)2 − (1− q)qn (t − λ− 1/(1− q))2
qn (t − λ− 1/(1− q)) + λ + q2n/(1− q) χIq (3.11)
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with the characteristic functionχIq on the interval

Iq =
[
−2

√
λ

1− q + λ +
1

1− q , 2

√
λ

1− q + λ +
1

1− q

]

=
[(√

λ−
√

1

1− q

)2

,

(√
λ +

√
1

1− q

)2]
(3.12)

and put

(pk)q = (tk)q + λ +
1

1− q = [k]q + λ

(
1− 1

qk

)
. (3.13)

Then we have

µq(dt) =

 fq(t) dt +
K∑
k=0

(Jk)qδ(pk)q if λ(1− q) 6 1

fq(t) dt if λ(1− q) > 1

(3.14)

wheredt denotes the Lebesgue measure andδ(pk)q is the Dirac unit mass att = (pk)q . Of
course,

K = sup{k | q2k > λ(1− q)} (3.15)

and

(Jk)q =
(

1− λ(1− q)
q2k

) (
λq−k+1

)k
[k]q !

1

expq
(
λq−k+1

) (3.16)

are as we set before.

Example 3.1. It is easy to see that in the case ofq → 1 the absolutely continuous part vanishes
and the distribution is supported on infinite discrete pointsk (k = 0, 1, 2, . . .) with the mass
(Jk)1 = e−λλk/k!. Thus we can recover the usual Poisson distribution,

µ1(dt) =
∞∑
k=0

e−λ
λk

k!
δk. (3.17)

On the other hand, taking the limitq → 0 the density function of the absolutely continuous
part becomes

f0(t) =
√

4λ− (t − λ− 1)2

2πt
χ[
(
√
λ−1)

2
,(
√
λ+1)

2
]. (3.18)

The point mass at(pk)0 will survive for k such thatq2k/(1− q) > λ holds, and asq → 0
the left-hand side of the inequality tends to 0 ifk 6= 0, and to 1 ifk = 0. Hence we have the
probability measure,

µ0(dt) = f0(t) dt + max(1− λ, 0)δ0 (3.19)

for the caseq = 0, which is nothing but the free Poisson distribution (see, for instance,
section 3.7 in [2]).
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4. Concluding remarks

In this paper, we have introduced aq-deformed Poisson distribution as the associated
probability measure with a certainq-deformed sequence of well known classical discrete
orthogonal polynomials, namely the Charlier polynomials (see definition 3.1). Several kinds
of q-deformations of the Charlier polynomials have been studied by many authors. One of the
most well known ones are called the classicalq-deformed Charlier polynomials defined by

cm(X; λ; q) = 2φ1(q
−m,X; 0; q,−qm+1/λ) (4.1)

(see, for instance, [15, p 187]). The Jacobi parameters of the three-term recurrence relation
for the monic formCλm(X; q) of these polynomials can be given as

αm = λq−1−2m + q−m + λq−2m − λq−m
βm = λq1−3m(1− qm)(1 +λq−m).

(4.2)

If we replace the variableX by (1− q)X + 1 and the parameterλ by (1− q)λ then the Jacobi
parameters of the induced sequence of polynomials become

αm = λq−1−2m + [m]qq
−m (1 +λ(1− q)q−m)

βm = λ[m]qq
1−3m

(
1 +λ(1− q)q−m) (4.3)

which can be regarded as a certainq-deformation ofλ + m andλm, respectively (see, for
instance, [20]). These parameters, however, are still considerably different from ours (cf
equation (3.3)). We can also find in [20] anotherq-deformation of the Charlier polynomials,
which is defined by the Jacobi parameters

αm = λqm + [m]q βm = λ[m]qq
m−1. (4.4)

This deformation and ours are apparently alike, but they are radically different. Because the
orthogonal polynomials defined by the Jacobi parameters (4.4) are rescaled versions of the
Al-Salam–Carlitz polynomials (see [17, p 196]), whose measure is still discrete, and theirq-
deformation is not compatible with the free probability theory in the case ofq = 0. Our
q-deformed Poisson distribution, however, has an absolute continuous part in general, and it
is closely related to theq-deformation of the Fock space. Actually, we have realized ourq-
deformed Poisson random variable recently in [21] as the linear combination of theq-creation,
theq-annihilation, theq-number and the scalar operators on theq-Fock space.

Acknowledgment

The authors would like to express their thanks to the referees for valuable comments and
suggestions.

References

[1] Voiculescu D V 1985Lecture Note in Mathematicsvol 1132 (Berlin: Springer) pp 456–588
[2] Voiculescu D V, Dykema K J and Nica A 1993Free Random Variables (CRM Monograph Series vol 1)

(Providence, RI: American Mathematical Society)
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